NOSSO BANNER

Create your own banner at mybannermaker.com!

Quarto Reich

Origem: Wikipédia, a enciclopédia livre.

Quarto Reich é um termo utilizado para descrever um futuro teórico da história alemã - um sucessor do Terceiro Reich. O termo foi utilizado inicialmente por Rudolf Hess após osJulgamentos de Nuremberg, quando, sofrendo de distúrbios mentais, afirmou ser ele o "Führer do Quarto Reich".[1] Porém o termo se tornou popular nos anos de 1960 e 1970, devido ao fato de várias figuras políticas da Alemanha Ocidental, como o chanceler Kurt Georg Kiesinger, possuírem vínculos com o regime do Terceiro Reich.

Em termos de neo-nazismo, o quarto Reich é apresentando como um Estado em que vigora a "supremacia ariana", anti-semitismo, Lebensraum, militarismo e totalitarismo. Neo-nazistasacreditam que o Quarto Reich abrirá caminho para o estabelecimento de um "Império Ocidental", um império pan-ariano abrangendo terras com proeminentes laços arianos (Europa,Rússia, Anglo-América, Austrália, Nova Zelândia, e algumas partes da América do Sul como o Brasil), o que permitiria que o Ocidente entrasse no "choque de civilizações". [2]

Em seu livro, "A Ascensão do Quarto Reich: As sociedades secretas que ameaçam assumir a América" (em inglês: The Rise of the Fourth Reich: The Secret Societies That Threaten to Take Over America) Jim Marrs argumenta que alguns membros sobreviventes do Terceiro Reich, juntamente com simpatizantes dos nazismo nos Estados Unidos e noutros países, trabalharam clandestinamente desde o final da Segunda Guerra Mundial para que alguns dos princípios do nazismo (por exemplo, militarismo, fascismo, imperialismo, espionagem generalizada e utilização de propaganda para controlar os interesses nacionais) sejam infiltrados na cultura, governo e empresas em todo o mundo, mas principalmente nos Estados Unidos. Ele cita a suposta influência do nacional-socialismo nos Estados Unidos no final da Segunda Guerra Mundial, tais como cientistas nazistas que ajudaram os E.U.A no avanço naindústria aeroespacial, bem como a aquisição e a criação de conglomerados pelos nazistas e seus simpatizantes após a guerra, tanto na Europa e E.U.A.



terça-feira, 24 de janeiro de 2012

A universalidade dentro do caos (a nossa imaginação é o único limite...)

Economia do Caos: Caos e Complexidade na Economia:
A universalidade dentro do caos

Em 1975, o físico Mitchell Feigenbaum debruçou-se sobre as estranhas propriedades da função recursiva Xn = k Xn-1 (1 - Xn-1). Começando num valor qualquer de X e dando um valor ao parâmetro k entre 0 e 4, podemos ver qual vai ser o comportamento a longo prazo do sistema repetindo a fórmula recursiva um bom número de vezes. De início, para valores de k pequenos, o sistema converge para um valor. Com k = 3, o sistema alterna entre dois valores: é uma solução de período 2. Para k = 3,5 o período passa a ser 4, em k = 3,56 duplica de novo, para uma solução de período oito, começando a partir daqui a haver uma duplicação de período cada vez mais rápida, que aparece no gráfico (figura 4) como uma ramificação, até que perto de k = 3,58 o sistema se torna caótico. No entanto, de forma fascinante, o Caos desaparece esporadicamente, surgindo janelas periódicas, para reaparecer logo a seguir.












Figura 4: O diagrama de bifurcações da aplicação logística Xn = k Xn-1 (1 - Xn-1), representando para cada valor de k os valores de X para que tende.
Feigenbaum começou depois a calcular os valores de k para os quais se davam as duplicações de período. Como utilizou uma calculadora programável muito lenta, convinha-lhe calcular o próximo valor de forma aproximada para ter de esperar menos tempo pelo resultado. Foi isto que lhe abriu a porta para uma descoberta estranhíssima: os números para os quais se dava uma duplicação de período aumentavam à razão constante de 4,6692016090. Espantado com esta regularidade, Feigenbaum repetiu os cálculos para a função trigonométrica Xn = k sen (Xn-1). Para sua surpresa, havia também uma razão de escalas, 4,6692016090: era igual!
Feigenbaum tinha descoberto a universalidade no Caos. O seu número é a constante de proporcionalidade para a duplicação de período não só em inúmeras funções matemáticas mas também em sistemas físicos reais, como células de convexão, fluidos turbulentos e até sistemas electrónicos, ópticos ou biológicos.






Figura 2: O Atractor de Lorenz








Figura 3: Outro atractor estranho - o Atractor de Rossler

Um comentário:

  1. A tradução matemática desta complexidade geométrica é a introdução de um conceito tão bizarro como o de que dimensão de um fractal é fraccionária. A 'dimensão fractal' (originalmente, dimensão de Hausdorf-Besicovitch) traduz o grau de irregularidade de um fractal, sendo calculada através de uma definição matemática. Por exemplo, a dimensão fractal do Conjunto de Cantor é 0,6309
    (log 2 / log 3), enquanto a da curva de Koch é 1,2619 (log 4 / log 3). Isto significa, por exemplo, que a curva de Koch, por ser mais "enrugada", ocupa mais espaço do que uma simples linha recta , mas menos espaço do que uma superfície .

    ResponderExcluir